星塚研究所

数学を主とした形式科学,自然科学,大学・大学院に関する2chと5chのまとめサイト

【話題】「円周率が3.05より大きいことを証明せよ」東大入試「伝説の良問」が教える数学センスと思考法とは?

1: しじみ ★ 2019/09/19(木) 10:03:17.94 id:Y3T6D/1H9

■東大入試に求められる「数学のセンス」とは?

 「数学のセンス」とはいったい何でしょうか。「計算が速い」だけでは、どうも違う気がします。「公式をよく知っている」というのもちょっと違うかな。でも、「公式を自由に使うことができる」となるとセンスかなあ、と感じるかもしれません。

 そこで、東京大学の入試問題を見てみましょう。どのようなセンスや基礎学力が要求されているかを念頭に置きながら、問題を楽しんでください。数学を楽しむことができる。これも重要な数学のセンスでしょうね。

■伝説の良問 1「円周率が3.05より大きいことを証明せよ」

円周率を計算!?

 

円周率πは古代ギリシャから今日に至るまで、さまざまな話題を提供してくれる数です。

 3.14159……と延々と(周期性がなく)続く超越数であるという難しさと、円周の長さとその円の直径の比という小学生でも分かる身近さの、二つの顔を持つ点が人気の秘密なのでしょう。

 このようなすてきな数は、他には見当たりません。このすてきな数を東大は入試問題にしました。でも、円周率が3.14ではなく、3.05より大? なぜでしょうか。

 約2200年前、ギリシャアルキメデスは、円に内接する正96角形と円に外接する正96角形の周の長さを計算して比較し、πは71分の233と7分の22の間にあることを見つけました。πの値が直接求められないならば、πに近づく方法を考えればよいという現代の解析学に近いような考え方をすでにしていたのです。

 日本でも、江戸時代の数学者、建部賢弘(たけべ・かたひろ)が正方形から始め、加速法という手法を駆使して正1024角形までを計算し、小数点以下41桁まで求めたといいます。

 この東西二つの計算法は、円周率を円周の長さと直径の関係で捉え、正多角形を用いるという、基本的には同じ考え方ですね。

 話はちょっと脱線しますが、ここに東西の文化の違いが隠れています。アルキメデスの正96角形の96は6の16倍ですから、まず正六角形からスタートし、正12角形、正24角形……と次々に辺の数を2倍にして計算したのです。

 一方、1024は2の10乗ですから、建部は正方形からスタートし、正八角形、正16角形、……正512角形、正1024角形と2倍にして計算していったようです。

 西洋のアルキメデスは合理的で、1辺の長さが半径に等しい正六角形から始めたのですが、建部のスタートは正方形。日本は木の文化で、門などの造形の基調は四角形であり、西洋のようなアーチは少ないので、正方形から始める方が自然だったのかもしれませんね。

 さて、東大入試はまさしくこれらの方法でπを求めなさいという趣旨でしょう。まず正六角形ならば、周の長さは半径の6倍。円周率は「3より大」と求められますが、東大の要求は「3.05より大」を示すことですから、惜しい!

 ならば、正六角形の次に正八角形を調べようという人と、正12角形を調べようという人がいるでしょう。いずれの方法も3.05より大きいと示すことができます。3.14に比べて、かなり大まかな近似値ですから、OKとなるわけですね。これが、東大が3.05に込めた秘密なのです。

https://diamond.jp/articles/-/213733

6: 名無しさん@1周年 2019/09/19(木) 10:06:33.20 id:oYOy9S1n0
証明ってとにかく苦手だったなぁ

5: 名無しさん@1周年 2019/09/19(木) 10:06:17.23 ID:j+FwbAe40
数学的帰納法で簡単に証明できるしな

7: 名無しさん@1周年 2019/09/19(木) 10:06:44.16 id:f35YlBST0
内接する多角形の辺を求めるなんてセンスゼロだろw

8: 名無しさん@1周年 2019/09/19(木) 10:07:15.28 id:SLeRkpMC0
正五角形の書き方なら知ってる

57: 名無しさん@1周年 2019/09/19(木) 10:21:43.63 ID:4crX12Fv0
>>8
ケーキ5等分に切れるんだ…(´・ω・`)

9: 名無しさん@1周年 2019/09/19(木) 10:08:24.74 ID:48z72T130
円周率は3.14なので3.14>>3.05
おk?
円周率を証明しろと言われたら問題飛ばす。

55: 名無しさん@1周年 2019/09/19(木) 10:21:05.67 id:M6Ujn0Ed0
>>9
円周率は3.14じゃねえよ馬鹿
3.14は単なる近似値

10: 名無しさん@1周年 2019/09/19(木) 10:08:42.08 id:qhAZzO6i0
円周率って何ぞや、私の頭はこの程度だ

14: 名無しさん@1周年 2019/09/19(木) 10:09:52.93 ID:L/fosekj0
>>10
円周の長さと直径の比率

11: 名無しさん@1周年 2019/09/19(木) 10:09:17.22 id:abcO6btg0
円周率の歴史を知ってたら普通に解けるボーナス問題

73: 名無しさん@1周年 2019/09/19(木) 10:25:52.77 id:LbZ7eo2X0
>>11
これ。
試験に正解するための必要最低限の勉強しかしていない人と
学問に好奇心をもって取り組んでいる人との違い

12: 名無しさん@1周年 2019/09/19(木) 10:09:33.07 id:ZXElkjNM0
半径3センチの円と5センチの円が相似なことをどうやって証明したらいいんだ?

17: 名無しさん@1周年 2019/09/19(木) 10:10:11.71 id:DxLOWKV30
おニャン子クラブのおかげで
3.1415926535897まで記憶できてるなぁ

91: 名無しさん@1周年 2019/09/19(木) 10:28:41.38 id:HQSH+V8G0
>>17
おれ、ブルーハーツ

18: 名無しさん@1周年 2019/09/19(木) 10:10:12.00 id:a0TQHPIU0
円周率は10桁程度知ってれば地球規模の円でも誤差数ミリになるから天文学的運用でも問題ない

19: 名無しさん@1周年 2019/09/19(木) 10:10:13.58 id:AnMzIrYC0
馬鹿だなぁ、小学校の先生が「円周率は3.14」と教えてくれたよ。この問題を出したやつは
小学生から勉強やり直せよ。

21: 名無しさん@1周年 2019/09/19(木) 10:11:35.50 id:NwZf0ZhT0
>>19
ゆとり教育で円周率を3にしたときに出された問題なんだが?

82: 名無しさん@1周年 2019/09/19(木) 10:27:05.79 ID:5iZ/Bisn0
>>21
それも間違い
「状況に応じて3や3.1にしてもよい」としたのを馬鹿な先生とか教育関係者が勘違いしただけ

30: 名無しさん@1周年 2019/09/19(木) 10:14:27.14 id:lJl2KNRf0
>>19
小学校の先生が正しいことを証明せよ!!

22: 名無しさん@1周年 2019/09/19(木) 10:11:48.80 ID:2U8Evcpv0
なんで3.14でも3.1でもなく3.05なんだろうか

27: 名無しさん@1周年 2019/09/19(木) 10:14:12.41 id:NwZf0ZhT0
>>22
実際に解いてみなよ
3.1だと高校生レベルでは無理だ

23: 名無しさん@1周年 2019/09/19(木) 10:11:49.76 ID:t2+LUmOI0
>>1

すげぇ! 自分だったら絶対正答できないわ。国立理系なのに

25: 名無しさん@1周年 2019/09/19(木) 10:13:04.50 id:Pupg94jl0
円周率って3じゃないの?

26: 名無しさん@1周年 2019/09/19(木) 10:13:18.29 ID:6zeT2cu30
3角形のの外周
6角形の外周
12角形の外周
と円に近づけていき、3.05を超えれば証明できる

28: 名無しさん@1周年 2019/09/19(木) 10:14:14.60 ID:1mfpQWcA0
良問ってほどでもないと思うけどな
方針はすぐに思い浮かぶわけで、計算力勝負になる愚問

41: 名無しさん@1周年 2019/09/19(木) 10:17:58.63 id:NwZf0ZhT0
>>28
円周率を3にした
ゆとり教育へのアンチテーゼ
として作られた問題だから

これ解けない東大生はいないよ

101: 名無しさん@1周年 2019/09/19(木) 10:30:14.32 id:MFYVRqqh0
>>28
低学歴乙
東大入試は計算力を問う問題は多い。
複雑な計算や場合分けをうまくやり通す地道な力が問われる問題は多い。

107: 名無しさん@1周年 2019/09/19(木) 10:31:24.85 id:gLB+N55V0
>>101
文系は数学をざっくり捨てるという作戦で
案外いい大学に入ってるヤツ多いよ

31: 名無しさん@1周年 2019/09/19(木) 10:14:54.38 ID:4PljttZj0
東大生ならもっと別の方法で証明できるだろ
AIとか使えよ

32: 名無しさん@1周年 2019/09/19(木) 10:15:09.48 id:dZNtTL9U0
ん?
これ十二角形だけじゃ証明にならんだろ
少なくとももう一個3.05以上になるケースを計算する必要がある

44: 名無しさん@1周年 2019/09/19(木) 10:18:33.19 ID:6zeT2cu30
>>32
24角形と3.05を超えるまで多角形にする力業
何角形で3.05超えるかわ知らない

121: 名無しさん@1周年 2019/09/19(木) 10:33:46.20 id:OC82vnrT0
>>32
徐々に上がっていったらいいのでは

33: 名無しさん@1周年 2019/09/19(木) 10:15:44.92 id:geOSA/cq0
簡潔で綺麗な式でお願いってことだろ
E=Mc2みたいな

34: 名無しさん@1周年 2019/09/19(木) 10:15:55.68 id:Q22FjRrk0
>>1
これはさすがに俺でも解ける
特に六角形スタートだと初期値3で計算が楽だし

35: 名無しさん@1周年 2019/09/19(木) 10:16:13.04 id:YwT1/kZU0
円周率って3.14…って小学生でも使うけど
どうやって、導き出されたのかを知るのは
高三になってから

60: 名無しさん@1周年 2019/09/19(木) 10:22:14.41 id:VPJ3eFWJ0
>>35
中学校で習ったけど、最近はやらないのか。

92: 名無しさん@1周年 2019/09/19(木) 10:28:59.67 id:PRGp2Kev0
>>35
なぜか小学生の時に知ってたなぁ
漫画かなんかだろうか?もしくは先生の小話か?

この問題は物事の周辺情報含めて覚えてるかのふるいにもなるし良い問題
中学生の数学が習得さえできてりゃ絶対解ける
小学生でも上の奴らなら理解できるしね

36: 名無しさん@1周年 2019/09/19(木) 10:16:53.80 id:bKf9g8nr0
かなり力技での解法だな

37: 名無しさん@1周年 2019/09/19(木) 10:17:18.23 id:dZNtTL9U0
後出しジャンケナーが多いな
当時の正答率とか低そうなもんだが
大受験生に解けないものをおまえらごときが解けるわけがない

46: 名無しさん@1周年 2019/09/19(木) 10:19:33.99 id:Q22FjRrk0
>>37
簡単だろ
小学生でも解けるし、これ解いたらからって東大に入れるって訳でもないし

76: 名無しさん@1周年 2019/09/19(木) 10:26:13.75 id:Ljzl7fPk0
>>37
東大卒(この問題が出るちょっと前に入学)だが、試験場で解けって言われてもたぶん無理

119: 名無しさん@1周年 2019/09/19(木) 10:33:37.72 id:TkmDBZG00
>>76
よくそんなんで東大に受かったな。三角関数を使って解くのなんて
一発で分かる。

39: 名無しさん@1周年 2019/09/19(木) 10:17:31.71 id:wuhYl/9u0
3.14だから

はい論破

42: 名無しさん@1周年 2019/09/19(木) 10:18:00.94 id:uJxopELx0
オレは707桁まで求めた

68: 名無しさん@1周年 2019/09/19(木) 10:24:49.00 id:KHLyu8cS0
>>42
一生を円周率の計算にかけたのか
ごくろうさん。
涅槃で待つ

45: 名無しさん@1周年 2019/09/19(木) 10:18:57.47 id:dol6BcAG0
昔の人の方が頭が良かったんだなあ・・・・

47: 名無しさん@1周年 2019/09/19(木) 10:19:43.09 id:hkJV9HLS0
大学受験の数学は暗記
灘高の先生がいうんだから間違いない

48: 名無しさん@1周年 2019/09/19(木) 10:19:46.10 id:GCBpBlro0
A 3.1425・・・と中学校でならったから。

99: 名無しさん@1周年 2019/09/19(木) 10:30:04.14 ID:8jT2vrwJ0
>>48
お前覚え間違ってるぞ

54: 名無しさん@1周年 2019/09/19(木) 10:20:36.55 id:UnUikmlh0
ラマヌジャンは真の天才

56: 名無しさん@1周年 2019/09/19(木) 10:21:24.79 id:tBpEuga20
微分積分大好きか

66: 名無しさん@1周年 2019/09/19(木) 10:23:34.71 id:Q22FjRrk0
>>56
今だったら『証明する計算プログラムを書け』という問題にした方が面白いかも

61: 名無しさん@1周年 2019/09/19(木) 10:22:36.97 id:dZNtTL9U0
微積で極限を出せるようにしとかないとダメなんじゃないか

62: 名無しさん@1周年 2019/09/19(木) 10:22:48.92 id:UnUikmlh0
>>1
>πは3.108よりも大きい。これで東大はほぼ合格ですね。

一問だけ解けて合格とかありえんわ

63: 名無しさん@1周年 2019/09/19(木) 10:23:09.07 ID:N/DmvKZB0
円周率の証明は、プログラムを作らせる時代になったのではないか

67: 名無しさん@1周年 2019/09/19(木) 10:23:42.66 id:M5AyI8Mh0
数学って基本

「公式はこうなってるから覚えとけ。え?何でそういう公式になるのか理由を教えろ?
四の五の言わずに覚えときゃいいんじゃ!そうなってんだから!」

みたいな問題が多かったな・・「答えは一つしか認めん!」みたいな

81: 名無しさん@1周年 2019/09/19(木) 10:27:04.83 id:bk5EcEet0
>>67
自分の友人の数学教師は数学は答えが一つしかないから好きと言ってた。
国語みたいに感性で答えの様子が変わるみたいなのは意地悪なんだと。

94: 名無しさん@1周年 2019/09/19(木) 10:29:10.77 id:cvM1a/iu0
>>81
証明とか解法は無数にある

110: 名無しさん@1周年 2019/09/19(木) 10:31:45.85 id:Q22FjRrk0
>>67
というか
「たとえどんな数多の思考プロセスを辿ろうと、論理的に正しければ必ず一つの答えに辿り着け」
「別のプロセスを使って別の答えに辿り着くならそれはプロセスか前提が間違っている」
というルールが綺麗だと思う
頭悪いから数学を偉そうに語れないけど

69: 名無しさん@1周年 2019/09/19(木) 10:25:15.06 id:gLB+N55V0
円周率は3と教わった(・ω・)

71: 名無しさん@1周年 2019/09/19(木) 10:25:45.86 ID:4t1+L4js0
円周率・・・神様でも割り切れないと思ってていい?

高卒のおバカですけど。

105: 名無しさん@1周年 2019/09/19(木) 10:30:55.83 id:HQSH+V8G0
>>71
真円てのが今作れないからね

72: 名無しさん@1周年 2019/09/19(木) 10:25:50.26 id:OpgKoH170
円周率って円の直径の長さをを1とした時の円の長さがその直径の3.1415…倍ってやつだったっけ?

85: 名無しさん@1周年 2019/09/19(木) 10:27:45.83 ID:671D36ef0
こういうの好き

86: 名無しさん@1周年 2019/09/19(木) 10:28:01.83 id:BjdZqwyL0
証明問題は苦手だなぁ
文章を書くのは苦ではなかったが数学的見地を文章で表すのは兎角難しかった

87: 名無しさん@1周年 2019/09/19(木) 10:28:10.26 id:gDzh1A5F0
円に内接する正n角形の外周を求めた時に正六角形が3だから

正12か24を求めてやればいい

88: 名無しさん@1周年 2019/09/19(木) 10:28:21.03 id:BqTg3gdg0
ちょっと何言ってるのかワカラナイ

93: 名無しさん@1周年 2019/09/19(木) 10:29:05.40 id:Ku61NY340
アフォのわたしはなぜ3.05なんだろうってそこからわかりませんでした

123: 名無しさん@1周年 2019/09/19(木) 10:34:04.44 ID:8jT2vrwJ0
>>93
3だと正6角形で暗算出来ちゃう位簡単だからじゃないかな

95: 名無しさん@1周年 2019/09/19(木) 10:29:19.47 id:CruESbhC0
正12角形の周の長さより円周の長さの方が大きいって部分はどう証明するの?
見た感じ?

103: 名無しさん@1周年 2019/09/19(木) 10:30:27.60 id:dZNtTL9U0
>>95
円を正無限角形だと仮定するんだろ

128: 名無しさん@1周年 2019/09/19(木) 10:34:36.75 id:CruESbhC0
>>103
ありがとう

96: 名無しさん@1周年 2019/09/19(木) 10:29:25.29 id:YRGutW6h0
2点を結ぶ直線は曲線より短いという定義から突き詰めて行けば良いのかな

98: 名無しさん@1周年 2019/09/19(木) 10:29:49.38 id:BqTg3gdg0
光よりも速いモノが存在しないのと同じく
真円も存在しないんだな。

106: 名無しさん@1周年 2019/09/19(木) 10:31:07.85 id:GlTvjvJ90
3.14は3.05より大きいに決まってるだろ
バカか

109: 名無しさん@1周年 2019/09/19(木) 10:31:44.40 id:Di6ZmwjT0
これが解けるかどうかって、センスの問題というより、
幾何学の歴史の知識の問題だと思う。

数学の問題が解けるかどうかって、パターンを知ってるかどうかに左右される部分が大きいのよ。

129: 名無しさん@1周年 2019/09/19(木) 10:34:47.50 id:PuFYMHgv0
円を中心から外側に向かって二等辺三角形で何分割にも等分して
二等辺三角形の面積の合計を計算するんじゃなかったっけ

細かく分割すればするほど、より正確な円周率に近づくと


参考文献

http://asahi.5ch.net/test/read.cgi/newsplus/1568854997/